MBA(PT) DEGREE III SEMESTER EXAMINATION DECEMBER 2013

SMP 2302 MANAGEMENT SCIENCE

(2012 Admission)

Time: 3 Hours

Maximum Marks: 50

PART A (Answer ALL questions)

 $(5 \times 2 = 10)$

- I. Distinguish between min-max and max-min theories.
- II. List and explain the assumption of linear programming.
- III. Distinguish between reneging and balking.
- IV. What is sequencing? How will you extend Johnson's algorithm to 3 machines x n job problem.
- V. What is time/Gantt chart in project management? Give an example.

PART B (Answer ANY FIVE questions)

 $(5 \times 4 = 20)$

- VI. What is decision tree? Give an example.
- VII. A small manufacturer employees 5 skilled men and 10 semi-skilled men for making a product in two qualities: a deluxe model and an ordinary model. The production of a deluxe model requires 2—hour work by a skilled man and 2-hour work by semi-skilled man. The ordinary model requires 1- hour work by a skilled man and 3 hour work by a semi-skilled man. According to worker's un ion rules, no man can work more than 8 hours per day. The profit of the deluxe model is Rs.1000 per unit and that of the ordinary model is Rs.800 per unit. Formulate a linear programming model for this manufacturing situation to determine the production volume of each model such that the total profit is maximized.
- VIII. Consider the following two machines and six jobs flow shop problem. Obtain the optimal schedule and the corresponding makespan for this problem.

Job	Machine 1	Machine 2	
1	5	7	
2	10	8	
3	8	13	
4	9	7	
5 6		11	
6	12	10	

- IX. How will you simulate the demand of a product if follows a probability distribution? Explain it with an example.
- X. Discuss the guidelines to construct a project network.
- XI. Find the initial basic feasible solution to the following transportation problem by using northwest corner cell method.

			То		Availability
		1	2	3	5
From	1	2	7	4	8
	2	3	3	1	7
	3	5	4	7	14
	4	1	6	2	
Demand		2	9	18	

